Pages

Sunday, December 16, 2007

Is a New Solar Cycle Beginning?

For more than a year, the sun has experienced a lull in activity, marking the end of Solar Cycle 23, which peaked with many storms in 2000--2003. Then on Tuesday, December 11, the orbiting Solar and Heliospheric Observatory (SOHO) spotted a small knot of magnetism that popped over the sun's eastern limb at latitude 24 degrees North. What's more, the field was magnetically reversed. These observations excited scientist because they might indicate the beginning of the next solar cycle.

Old cycle spots congregate near the sun's equator, or 0 degrees latitude. But new solar cycles always begin with a high-latitude (around 25 or 30 degrees), reversed polarity sunspot--a sunspot with magnetic polarity opposite to that of the previous solar cycle.

However, there was no sunspot. So far the region has been just a bright knot of magnetic fields. If these fields do coalesce into a dark sunspot, scientists will announce that Solar Cycle 24 has officially begun.

Many forecasters believe Solar Cycle 24 will be big and intense. Starting slow and peaking in 2011 or 2012, the cycle to come could have significant impacts on telecommunications, air traffic, power grids and GPS systems, as well as creating some spectacular auroras.

To learn more about the Solar and Heliospheric Observatory (SOHO), its mission and observations, visit the mission home page: http://sohowww.nascom.nasa.gov/


The Rings of Saturn as Old as the Solar System?

Saturn's rings were probably created as the solar system was being built around 4.5 billion years back, according to scientists.

The scientists in the United States have carried out a study, using data collected by NASA's Cassini spacecraft, and found that rather than being formed 100 million years ago, the rings are created when the solar system was under construction.

Data from NASA's Voyager spacecraft in the 1970s and later the Hubble Space Telescope led the scientists to believe that Saturn's rings were relatively young and likely created by a comet that shattered a large moon.

"Ring features seen by instruments on Cassini - which arrived at Saturn in 2004 - indicate the rings are not formed by a single cataclysmic event. The ages of the different rings appear to vary significantly and the ring material is being continually recycled.

"The evidence is consistent with the picture that Saturn has had rings all through its history. We see extensive, rapid recycling of ring material, in which moons are continually shattered into ring particles, which then gather together and re-form moons.

"We have discovered that the rings were probably not created just yesterday in cosmic time, and in this scenario it is not just luck that we are seeing planetary rings now. They probably were always around but continually changing, and they will be around for many billions of years," according to Prof Larry Esposito, the Principal Investigator for Cassini's Ultraviolet Imaging Spectrograph at CU-Boulder.

To learn more, visit the Cassini mission home pages: http://saturn.jpl.nasa.gov and
http://www.nasa.gov/cassini


Voyagers 1 and 2 Still Expanding Our Knowledge of Space

NASA's Voyagers 1 and 2, launched 30 years ago, were scheduled to work for five years. They are expected to continue sending back information from a limited number of instruments until 2020.
The Voyagers have had more public fame than most unmanned NASA spacecraft, in great part due to the messages and cultural artifacts that they carry in the event they encounter extraterrestrial life. Each has a "golden record" that contains sounds (including greetings in several languages and music, including Chuck Berry's "Johnny B. Goode") and images (including a solar system map and a picture of people eating, licking and drinking).
Driver/Transportation

NASA’s Voyager 2 spacecraft recently broke through the edge of the bubble of solar wind that radiates from our sun, where the transition to interstellar space begins.

By crashing this turbulent border, known as the solar wind termination shock, while nearly 1 billion miles closer to the sun than where Voyager 1 struck it, mission scientists say Voyager 2 showed this solar-wind bubble — the heliosphere — is irregularly shaped.

This border shock area is formed when the solar wind is abruptly slowed by pressure from the gas and magnetic field of interstellar space, according to University of Arizona scientist J. Randy Jokipii, a Voyager science team member and Regents' professor.

The twin spacecraft, launched in the summer of 1977, are many billions of miles apart.
The area between the solar system's bubble and true interstellar space may take 10 years to cross, according to Jokipii.

Jokipii was one of several Voyager science team members who made presentations on Voyager 2's most recent data earlier this week at the 2007 fall meeting of the American Geophysical Union in San Francisco.

Team members said Voyager 2's instruments showed that it crossed the shock area several times, proving the edge "sloshes" back and forth, like surf on the beach.

Voyager 2 is so far out that its radioed datagrams to scientists back on Earth take more than 13 hours to arrive.

As the plutonium in the spacecrafts' nuclear-power generators degrades they produce less power, and equipment has been turned off.

The Voyagers are expected to function and send back data from their reduced instrumentation until 2020, well over 40 years after they were launched.

Once the spacecraft cross the zone between the heliosphere and true interstellar space, Jokipii said, "The Voyagers' detectors will be the first to detect interstellar matter, magnetic fields and energetic particles. This will tell us a great deal about the system's local space environment."

To learn more about this discovery and the current missions of NASA’s Voyager 1 and 2 spacecraft, visit their website: http://voyager.jpl.nasa.gov


Course Change to Comet Hartley 2

On December 13, NASA announced the retargeting of the EPOXI mission for a flyby of comet Hartley 2 on October 11, 2010. Hartley 2 was chosen as EPOXI's destination after the initial target, comet Boethin, could no longer be found. Scientists think comet Boethin may have broken into pieces too small to be located.

The EPOXI mission combines two exciting science investigations -- the Extrasolar Planet Observation and Characterization and the Deep Impact Extended Investigation (abbreviated "EPOXI"). Both investigations will be performed using the Deep Impact spacecraft.

Periodic Comet Hartley 2, also known as 103P/Hartley and 1991t, was the backup flyby choice for comet Boethin. Hartley 2 was discovered on March 15, 1986 by Malcolm Hartley at the Schmidt Telescope Unit in Siding Spring, Australia. Its estimated diameter is 1.6km and its orbital characteristics are as follows: Perihelion distance: 1.03 AU; Semi-major axis: 3.45; Eccentricity: 0.699; Orbital period: 6.41 years; Last perihelion: 2004.

The spacecraft's closest approach to the comet will be about 620 miles. The spacecraft will use the same two science instruments it used during the prime mission to guide an impactor into comet Tempel 1 in July 2005. If EPOXI's observations of Hartley 2 show it is similar to one of the other comets that have been observed, this new class of comets will be defined for the first time. If the comet displays different characteristics, it would deepen the mystery of cometary diversity.

In addition to investigating comet Hartley 2, the spacecraft will use the larger of its two telescopes, beginning in late January 2008, to observe several previously discovered nearby extrasolar planetary systems. It will study the physical properties of giant planets and search for rings, moons and planets as small as three Earth masses. It also will look at Earth as though it were an extrasolar planet to provide data that could become the standard for characterizing these types of planets.

Mission controllers at JPL began directing EPOXI towards Hartley 2 on November 1. They commanded the spacecraft to perform a three-minute rocket burn that changed the spacecraft's velocity. EPOXI's new trajectory sets the stage for three Earth flybys, the first on December 31, 2007. This will place the spacecraft into an orbital "holding pattern" until time for the optimal encounter of comet Hartley 2 in 2010.

EPOXI's low mission cost of $40 million is achieved by taking advantage of the existing Deep Impact spacecraft.

For information about EPOXI, visit: http://www.nasa.gov/epoxi


Extrasolar Planet Gliese 581 D Might Be Habitable

In April, a European team announced the discovery of two new planets orbiting the star Gliese 581. Gliese 581 (pronounced “Gleez”) is a type M2.5V red dwarf star located 20.4 light years away in the constellation Libra. The two planets, the fourth and fifth discoveries around the parent star, had masses at 5 and 8 times that of Earth. Given their distance to their star, these new planets, now known as Gliese 581c and Gliese 581d, were the first ever possible candidates for habitable planets.

The journal Astronomy & Astrophysics has just published two theoretical studies of the Gliese 581 planetary system. Two international teams, one led by Franck Selsis and the other by Werner von Bloh, investigated the possible habitability of these two super-Earths from two different points of view. To do this, they estimated the boundaries of the habitable zone around Gliese 581, that is, how close and how far from this star liquid water can exist on the surface of a planet.

Both teams found that, while Gliese 581 c is too close to the star to be habitable, the planet Gliese 581 d might be habitable. However, the environmental conditions on planet d might be too harsh to allow complex life to appear. Planet d is tidally locked, like the Moon in our Earth-Moon system, meaning that one side of the planet is permanently dark. Thus, strong winds may be caused by the temperature difference between the day and night sides of the planet. Since the planet is located at the outer edge of the habitable zone, life forms would have to grow with reduced stellar irradiation and a very peculiar climate.

In any case, both studies definitely confirmed that Gliese 581c and Gliese 581d will be prime targets for the future ESA/NASA space mission Darwin/Terrestrial Planet Finder (TPF), dedicated to the search for life on Earth-like planets. These space observatories will make it possible to determine the properties of their atmospheres.


Red Sunset Apparently Observed on an Extrasolar Planet

For the first time, astronomers have spotted what looks like a sunset on a planet outside our solar system. Using the Hubble Space Telescope, they detected traces of a red haze surrounding a Jupiter-like ball of hot gas circling a star in the northern sky 63 light-years — 370 trillion miles — from Earth.

The haze is similar to the thick atmospheres around Venus and Titan, Saturn’s largest moon, said Frederic Pont, an astronomer at the Geneva Observatory in Switzerland, who led the discovery team.

The discovery is another step in the quest to find an Earth-like planet that could support life. NASA is planning space missions to detect such objects.

Since 1995, astronomers have detected 268 extrasolar planets orbiting 230 stars. Some form miniature solar systems that contain as many as five planets. So far, none is a cool, rocky planet like Earth, and none is thought capable of supporting life.

Pont’s planet — with the scientific name HD 189733b — was discovered in 2005 in one of its frequent passes in front of its star. As it crossed the star’s disk, it briefly dimmed the light reaching Earth. The dimming, about 3 percent, was repeated every 2.2 days as the planet whirled around its host. The star is about three-quarters the size of our sun. It is in the faint constellation Vulpecula (“little fox”).

The haze was discovered because gases in a planet’s atmosphere affect the color of starlight as it passes through on its way to Earth. The red light from this planet revealed traces of iron, silicate and aluminum oxide, the sources of rubies and sapphires.

In July, British researchers using NASA’s Spitzer Space Telescope reported finding signs of water vapor in the same planet’s atmosphere. Pont’s group detected no such evidence.
However, an American astronomer, Travis Barman of the Lowell Observatory in Flagstaff, Ariz., in April reported definite signs of water vapor in the atmosphere of a different planet 150 light-years — 880 trillion miles — away in the constellation Pegasus.

That planet, nicknamed Osiris, for the Egyptian god of the dead, has oxygen, carbon and hydrogen as well as water in its atmosphere. It is about 1.3 times bigger than Jupiter and orbits its star every 3.5 days at a distance of 4 million miles, much closer than Mercury is to the sun. Its temperature, almost 2,000 degrees Fahrenheit, makes it uninhabitable for any form of life known on Earth.

The planet in Vulpecula is about 1.25 times bigger than Jupiter. It’s only 3 million miles from its star, and its temperature, about 1,700 degrees Fahrenheit, is also far too hot for life as we know it.

To learn more about extrasolar planets, visit NASA’s PlanetQuest website: http://planetquest.jpl.nasa.gov


XMM-Newton Unveils Hidden Cosmic Giant

For years astronomers could not understand the relation of two equally bright and large X-ray regions in the cluster of galaxies known as Abell 3128. Now they understand. Astronomers from SRON Netherlands Institute for Space Research have discovered a new cluster of galaxies, hidden behind a previously identified cluster of galaxies. The new cluster is apparently just as bright as the first group, but is six times further away. The astronomers made the discovery as part of an international team using the space telescope XMM-Newton.

Clusters of galaxies are the largest structures in the universe. They consist of tens to hundreds of massive galaxies, of which each in turn consists of hundreds of billions of stars. Gravity is the binding factor. The hot gas of tens of millions degrees Celsius, present in the clusters, emits X-rays, which renders the cluster visible for space telescopes such as XMM-Newton. Detailed analyses of these X-rays tell astronomers more about the composition of the gas and accordingly, its origin.

What was so intriguing about the two X-ray spots in cluster Abell 3128 was the fact that although they had the same size and brightness, the gas clouds seemed to have completely different compositions. While one spot was clearly caused by a hot gas cloud rich in metals released by supernova explosions in the galaxies, the other spot seemed to contain a much lower amount of metals than any other cluster previously observed.

The observations with the XMM-Newton made the surprise complete. The gas cloud behind the puzzling X-ray spot was found to be 4.6 billion light years away, at least six times further than cluster Abell 3128.

The research of large cluster of galaxies mainly centers on the question as to how the large structures of the universe formed. According to current insights, material is spread throughout the universe as a web of thread-like structures of rarefied hot gas: the cosmic web. Between these threads are cavities that are becoming increasingly larger as the universe expands. The structure is often compared to clusters of soap bubbles. The density of the material is highest at the intersections in the web. Therefore that is where clusters of galaxies develop.

XMM-Newton is the X-ray telescope of the European Space Agency (ESA) for which SRON built an instrument capable of analyzing the X-rays in detail. XMM-Newton was launched in 1999 from French Guyana and still functions superbly. ESA recently extended the operation of the satellite for a further 5 years.

To learn more about XMM-Newton, visit these websites:

XMM-Newton Science Operations Centre – http://xmm.vilspa.esa.es/
XMM-Newton Education and Public Outreach – http://xmm.sonoma.edu/


****************************************

MARS IS COMING, PART 7

With only a few days before Mars’ closest approach to Earth on December 18/19 and opposition with Earth coming on December 24, please enjoy your next installment on the Red Planet Mars.


Surface Features, Part 2

The northern plains have remarkably little relief. They encompass all of the terrain within 30° of the pole except for the layered terrains immediately around the pole. Three broad lobes extend to lower latitudes. These include Chryse Planitia and Acidalia Planitia (centered on 30° W longitude), Amazonis Planitia (160° W), and Utopia Planitia (250° W). The only significant relief in this huge area is a large ancient impact basin, informally called the Utopia basin (40° N, 250° W).

Several different types of terrain have been recognized within the plains. In knobby terrain, numerous small hills are separated by smooth plains. The hills appear to be remnants of an ancient cratered surface that is now almost completely buried by younger material that forms the plains. Various plains have a polygonal fracture pattern that resembles landforms found in permafrost regions on Earth. Others have a peculiar thumbprint-like texture.

The origin of the low-lying northern plains remains controversial. Some scientists suggest they were formerly occupied by ocean-sized bodies of water that were fed by large floods. Others have seen little evidence of global-sized bodies of water and have noted the difficulty of explaining the disappearance of such large water volumes.

Large flood channels, termed outflow channels, are observed to be cut into the Martian surface in several areas. The channels are generally tens of kilometers across and hundreds of kilometers long. Most emerge full-size from rubble-filled depressions and continue downward into the northern plains or the Hellas basin in the south. Many of the largest channels drain from the south and west into Chryse Planitia. These are true channels in that they were once completely filled with flowing water, as opposed to most river valleys, which have never been close to full but contain a much smaller river channel. The peak discharges of the floods that cut the channels are estimated to have been a hundred to a thousand times the peak discharge of the Mississippi River—truly enormous events. Some of the floods appear to have formed by catastrophic release of water from lakes. Others formed by explosive eruption of groundwater.

Close to the equator, centered on 70° W longitude, are several interconnected canyons collectively called Valles Marineris. Individual canyons are roughly 200 km (125 miles) across. At the center of the system, several canyons merge to form a depression 600 km (375 miles) across and as much as 9 km (5.6 miles) deep—about five times the depth of the Grand Canyon. The entire system is more than 4,000 km (2,500 miles) in length, or about 20 percent of Mars's circumference. At several places within the canyons are thick sedimentary sequences, which suggest that lakes may have formerly occupied the canyons. Some of the lakes may have drained catastrophically to the east to form large outflow channels that start at the canyons' eastern end. How the canyons formed is not known, but faulting probably played a major role.

The canyons of Valles Marineris terminate to the west near the crest of the Tharsis rise, a vast bulge on the Martian surface more than 8,000 km (5,000 miles) across and 8 km (5 miles) high at its center. Near the top of the rise are three of the planet's largest volcanoes—Ascraeus Mons, Arsia Mons, and Pavonis Mons—which tower 18, 17, and 14 km (11.2, 10.5, and 8.7 miles), respectively, above the mean radius. Just off the rise to the northwest is the planet's tallest volcano, Olympus Mons, and at the north end is yet another large volcano, Alba Patera, which approaches 7 km (4.3 miles) in height. Between these giant landforms are several smaller volcanoes and lava plains. What formed Tharsis is not known; it may have resulted from a combination of uplift and the accumulation of huge volumes of volcanic deposits.

The presence of the Tharsis rise has caused stresses within, and deformation of, the crust. A vast system of fractures radiating from Tharsis and compressional ridges arrayed around the rise are evidence of this process. The radial faulting around Tharsis appears to have contributed to the formation of the Valles Marineris system.

Another volcanic rise is located in the northern region of Elysium at about 215° W longitude. Much smaller than Tharsis, being only 2,000 km (1,200 miles) across and 6 km (3.7 miles) high, the Elysium rise is also the site of several volcanoes.


Next Time: "The Interior, Martian Meteorites and Martian Moons"


Bibliography

Mars. (2007). In Encyclopædia Britannica. Retrieved October 26, 2007 , from Encyclopædia Britannica Online: http://www.britannica.com/eb/article-9110149

Mars (2007). In The Columbia Encyclopedia, Sixth Edition 2007. Copyright 2007 Columbia University Press. Retrieved October 26, 2007 from Encyclopedia.com
http://www.encyclopedia.com/doc/1E1-Mars-ast.html

Planets: Mars. In NASA Solar System Exploration, Last updated October 23, 2007. Retrieved October 26, 2007, from the NASA Solar System Exploration website, maintained by NASA's Jet Propulsion Laboratory:
http://solarsystem.jpl.nasa.gov/planets/profile.cfm?Object=Mars


****************************************

THE SKY THIS WEEK


Dec 16 – the Moon Occults Asteroid 2 Pallas

Dec 16 – the planet Uranus is 2° south of Moon

Dec 17, 5:18 A.M ET - First Quarter Moon

Dec 17 – the planet Mercury is in superior conjunction

Dec 18 – the planet Mars closest approach for the current apparition (0.589 AU)

Dec 20 – the planet Saturn stationary. The body appears motionless in the sky due to the turning point between its direct and retrograde motion.

Dec 20 – the dwarf planet Pluto is in conjunction with the Sun

Dec 22, 1:08 A.M. ET (06:08 UT) - Winter solstice for the northern hemisphere (Summer solstice for the southern hemisphere)

Dec 22 – the Moon is at perigee, the point in the Moon's orbit when it is nearest to Earth

Dec 22 – Peak of the Ursid meteor shower. This shower is caused by dust from Comet P/Tuttle, also known as Comet 1790 II. The comet was originally found by French astronomer Pierre Méchain in 1790, and rediscovered by Horace Tuttle of the Harvard Observatory in 1858. This comet has a period of 13.7 years. Meteors from the Ursid shower may be visible from December 17 through 25 with the peak occurring December 21/22. The Ursid meteor rate is not spectacular, averaging only 5 per hour. The meteors will appear to originate from a point near the star Beta Ursae in the middle of the constellation Ursa Major (RA 14hrs 28min, Dec +76°) in the northern sky.


****************************************

THIS WEEK IN HISTORY

Dec 16, 1826 – Birthday of Italian astronomer Giovanni Battista Donati (1826 – 1873)

Dec 16, 1857 – 150th birthday of American astronomer Edward Emerson Barnard (1857 – 1923), said to be one of the greatest observational astronomers.

Dec 16, 1917 – 90th birthday of American author Arthur C. Clarke (Happy Birthday, Arthur!)

Dec 16, 1965 – Launch of Pioneer 6 (Sun Orbiter)

Dec 16, 1994 - Discovery of QUE 94201 (a Mars Meteorite)

Dec 19, 1960 – Suborbital launch of Mercury 1 (unmanned)

Dec 20, 1904 – Birthday of Mount Wilson Observatory

Dec 20, 1939 – Birthday of Ames Research Center (http://www.arc.nasa.gov/)

Dec 21, 1984 – Launch of Vega 2 Launch (Soviet Venus/Comet Halley Mission)

Dec 21, 1966 – Launch of Luna 13 (USSR Moon Lander)


****************************************

MUSICAL DIVERSION

It has been suggested that during the Christmas seasons of 15th-century England, it was not uncommon for patrolling town watchmen to sing carols and to wish good health to the nobility and landowners whom they passed, in an effort to earn a little extra money. Their greeting might have been something similar to "God keep you strong, gentlemen." Of course, it would not have sounded quite like that in the English language of the day. For example, to keep or hold something would have meant to "rest" it, and to be strong or mighty would have meant to be "merry." So the watchman's greeting would have actually been something closer to "God rest ye merry, gentlemen." The song may have been lengthened over time, by different singers and by different generations, with the adding of the Christmas story and of other good wishes.

So may have been the birth of one of the oldest known Christmas carols. The concept of carols came from the common people who wished to express their simple ideas and honest feelings that were not expressed by the somber music of the organized church. The word "carol" derives from the French word caroller, meaning to dance around in a circle. The word meaning eventually came to also include music and lyrics. There were carols for all occasions, with Christmas carols relating, for the most part, to the birth of Jesus. It is said that Christmas carols were first brought into church services in the 12th century by St Francis of Assisi. By the 14th century, the tradition of carol singing and dancing was firmly established throughout Europe. The Protestant reformation came during 16th century, and it was during this time that the first versions of many of today's carols were written.

Then in the 17th century came England's "Cultural Revolution" during the war to topple King Charles I (1601 – 1649). The Puritan English Parliament of 1647 officially abolished the celebration of Christmas and all other festivals, as well as the lively music that went with them. Since they were not performed and passed on, many old Christmas carols were lost during this time. It was not until after the fall of the staunch Protestant Oliver Cromwell (1599 – 1658) that Christmas became legal again.

Christmas carols finally became popular again during the lifetime of Queen Victoria (1819 - 1901), when they again expressed joyful and merry themes in their lyrics. As religious observances in the United States and England were closely linked the popularity of Christmas carols grew in both countries in the 19th century.

The revival and perpetuation of the Christmas carol began in 1822 when collections of old songs were published. A record of these carols was preserved in 1823 when British writer and satirist William Hone (1780 – 1842) published a “List of Christmas Carols now annually printed” in is book, “Ancient Mysteries Described.” Later, in 1833, came another surge of carol music by British solicitor and antiquarian William B. Sandys (1792 – 1874). That year, Sandys (pronounced “Sands”), published a carol collection entitled "Christmas Carols Ancient and Modern” (London, Richard Beckley, 1833) and it was in this collection that "God Rest Ye Merry, Gentlemen" first appeared in print. Other carols that first appeared in this collection include "The First Nowell", "I Saw Three Ships Come Sailing In", "God Bless the Master of This House", "Hark the Herald Angels Sing". It has been suggested that the carol “God Rest Ye Merry, Gentlemen” owes its durability to the way its first verse so plainly expresses the essence of the Christmas story.


God Rest Ye Merry, Gentlemen

God rest ye merry, gentlemen, let nothing you dismay,
Remember Christ our Savior was born on Christmas Day;
To save us all from Satan’s power when we were gone astray.

Chorus:

O tidings of comfort and joy, comfort and joy;
O tidings of comfort and joy.

In Bethlehem, in Israel, this blessèd Babe was born,
And laid within a manger upon this blessèd morn;
The which His mother Mary did nothing take in scorn.

(chorus)

From God our heavenly Father a blessèd angel came;
And unto certain shepherds brought tidings of the same;
How that in Bethlehem was born the Son of God by name.

(chorus)

“Fear not, then,” said the angel, “Let nothing you afright
This day is born a Savior of a pure Virgin bright,
To free all those who trust in Him from Satan’s power and might.”

(chorus)

The shepherds at those tidings rejoiced much in mind,
And left their flocks a-feeding in tempest, storm and wind,
And went to Bethl’em straightaway this blessèd Babe to find.

(chorus)

But when to Bethlehem they came where our dear Savior lay,
They found Him in a manger where oxen feed on hay;
His mother Mary kneeling unto the Lord did pray.

(chorus)

Now to the Lord sing praises all you within this place,
And with true love and brotherhood each other now embrace;
This holy tide of Christmas all others doth deface.

(chorus)

God bless the ruler of this house, and send him long to reign,
And many a merry Christmas may live to see again;
Among your friends and kindred that live both far and near—

That God send you a happy new year, happy new year,
And God send you a happy new year.

-----


To see and hear more on the "God Rest Ye Merry, Gentlemen" visit this page of "The Cyber Hymnal" - http://www.cyberhymnal.org/htm/g/o/godrest.htm

"God Rest Ye Merry, Gentlemen" on the "Christmas Carols" Website - http://www.carols.org.uk/god_rest_ye_merry_gentlemen.htm

To learn more about the carol "God Rest Ye Merry, Gentlemen,” visit this article in Wikipeida: http://en.wikipedia.org/wiki/God_Rest_Ye_Merry_Gentlemen

Visit this web page of “Thanks Much” to learn more about the history, lyrics and collect a downloadable MP3 file of "God Rest Ye Merry, Gentlemen" - http://www.thanksmuch.com/christmas/god-rest-ye-merry-gentleman-mp3.html


****************************************

No comments:

Post a Comment