Monday, July 30, 2012

NuSTAR Passes Post-Launch Assessment

The above image is an artist's concept of NASA's NuSTAR spacecraft in Earth orbit, with the 10-meter (30-foot) mast deployed. The optics modules are on the far right and the detectors are positioned at the focal plane on the far left. Image Credit: NASA/JPL-Caltech

On July 27th we finally received a much anticipated update on NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) mission. It seems this week, the spacecraft passed its Post-Launch Assessment Review at the Jet Propulsion Laboratory (JPL) in Pasadena, California. This achievement clears the way for the mission to enter into its science operations phase in August. NuSTAR is currently in the final stages of "Phase C/D," or the design and development phase, which included building and testing the flight hardware, launch and early operations (e.g., spacecraft checkout, mast deployment, instrument commissioning and calibrations). In August, NuSTAR will enter "Phase E," or the operations phase, meaning that it will primarily gather science data.

Since obtaining its first-light images of the galactic black hole Cygnus X-1 on June 28th, NuSTAR has been observing bright X-ray sources across the sky as part of the instrument commissioning. Last week, the mission participated in a major international cross-calibration campaign where NuSTAR and NASA's Chandra and Swift telescopes, together with INTEGRAL, Suzaku, and XMM-Newton, observed the quasar 3C 273 in concert. Quasar 3C 273, an extremely bright high-energy source at a distance of 2.4 billion light years, is the first quasar ever to be identified and is the optically brightest quasar in the sky. The coordinated observations of this bright, variable source will allow X-ray satellites to accurately measure their relative sensitivities and to conduct science investigations with joint data sets.

One example of a joint science observation took place between July 21st and 24th. NuSTAR observed the supermassive black hole that resides at the center of our own Milky Way galaxy as part of a large, multi-wavelength campaign. This supermassive black hole, our closest example, is known as Sagittarius A* (pronounced "Sagittarius A-star"). The descriptor of supermassive is accurate, since Sagittarius A* is approximately 4 million times the mass of our sun. NuSTAR obtained high-energy X-ray data on Sagittarius A*, complementing coordinated infrared images obtained with the Keck telescopes, low-energy X-ray data obtained with Chandra, and very high-energy gamma-ray data obtained with the High-Energy Stereoscopic System (HESS). These data will monitor the flickering of Sagittarius A* as it grows by accreting matter, thereby teaching astronomers about the extreme environments around black holes and the physics of black hole growth.Very soon, the hunt will be on for hidden black holes, in our galaxy and beyond.

And now, the mission particulars...

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) is a Small Explorer mission led by the California Institute of Technology in Pasadena and managed by NASA's Jet Propulsion Laboratory, also in Pasadena, for NASA's Science Mission Directorate in Washington. The spacecraft was built by Orbital Sciences Corporation, Dulles, Virginia. Its instrument was built by a consortium including Caltech; JPL; the University of California, Berkeley (UC Berkley); Columbia University, New York; NASA's Goddard Space Flight Center, Greenbelt, Maryland; the Danish Technical University in Denmark; Lawrence Livermore National Laboratory, Livermore, California; and ATK Aerospace Systems, Goleta, California. NuSTAR will be operated by UC Berkeley, with the Italian Space Agency providing its equatorial ground station located at Malindi, Kenya. The mission's outreach program is based at Sonoma State University, Rohnert Park, California. NASA's Explorer Program is managed by Goddard. JPL is managed by Caltech for NASA. For more information on the NuSTAR mission, visit and .

To learn more about the High Energy Focusing Telescope (HEFT), visit .


No comments: